Liquid Argon TPCs

JEN RAAF, FERMILAB

WORKSHOP ON FUNDAMENTAL PHYSICS AT THE SECOND TARGET STATION JULY 26-27, 2019

Two detection opportunities for interaction of charged particles with Ar

Ionization electrons

▶ Ionization potential: ~24 eV needed per electron/ion pair created

Scintillation light

- ▶ 128nm VUV, ~40 photons per keV (depends on E field, particle type, and argon purity)
- ► Early & late light components
 - Dark matter detectors use ratio for discrimination of electron-like from nuclear-recoil-like events

This talk will mostly discuss needs for ionization detection

Single vs. dual phase TPCs

Single phase

Light collected by PMTs lonization charge detected at wires/pads

Anode sense wires or pads Onit discription Cathode Cathode

"Light-based" dual phase

Light and charge created in primary interaction Also detect secondary light created when ionization charge is extracted into gas phase

"Light & charge-based" dual phase

Light and charge created in primary interaction Amplify charge extracted into gas phase Detect amplified charge at wires/pads

Ionization signal detection

Thresholds: detection \rightarrow tracking

- ► How low in energy do you need to detect events?
 - ▶ If very low energy, scintillation detection is probably better suited than ionization
 - ► A gaseous TPC could also be considered (with tradeoff in event rate)

Liquid vs. Gas

- ▶ Drift velocity in LAr at E = ~500 V/cm: 1.6 mm/us
- For a gaseous argon-based TPC, using pure argon is not easy for detector HV stability reasons
 - ▶ Usually add O(10%) CH₄ or CO₂, which also has the benefit of increasing drift velocity to ~5-10 cm/us
- Spatial resolution
 - Existing 3mm wire pitch LArTPCs achieve ~1mm resolution
 - ► Existing gaseous TPCs achieve ~100's um resolution
 - ▶ Diffusion of drifting electron cloud affects spatial resolution

Wire/anode

planes

▶ TPC

- ▶ Rectangular TPC with horizontal drift (47 cm, 0.25t active)
- ► ArgoNeuT/LArIAT: 2 readout wireplanes at ±60° (induction, collection) wireplane (vertical wires, field shaping)
 - ► ArgoNeuT: warm electronics
 - ► LArIAT: BNL + MSU cold electronics, Most data collected with 4mm wire spacing (480 readout channels total), but also collected data w/5mm and 3mm spacing
- ► PixLAr: 1 plane of rectangular pads
- Light collection system
 - ► ArgoNeuT: none
 - ▶ LArIAT/PixLAr: Interior walls of TPC lined with TPB-coated reflective foils
 - ▶ LArIAT: 2 cryogenic PMTs view active volume through wireplanes, SiPMs, ARAPUCA prototype
 - ▶ PixLAr: ARAPUCA, ArcLight prototype, mounted inside field cage

MicroBooNE

► TPC

- ► Rectangular TPC with horizontal drift (2.56 m, ~89t active)
- ▶ 3 readout wireplanes (2 induction at ±60°, 1 collection w/vertical wires)
- ▶ 3 mm wire pitch (~8200 channels in total)

Light collection system

Cryogenic PMTs view active volume through wireplanes, with TPB-coated acrylic plates mounted in front of PMTs

2.3 m

Argon Purity

Parameter	Value	Motivation
Argon purity	<100 ppt O ₂	MIP identification at longest drift
Argon purity	<2 ppm N ₂	Scintillation light output
LAr Temperature gradient	<0.1 K	Drift-velocity uniformity
LAr recirculation rate	1 volume change/day	Maintain purity
Cryostat heat load	$<15 \text{ W/m}^2$	Minimize convection currents and bubbles
Cryogenic capacity	10 kW	Capacity to deal with expected heat load
Cryostat maximum pressure	2.1 bar	Determines relief sizing

MicroBooNE specs

- ▶ Longer drift requires more strict requirements on O₂ contamination in the argon
- ► N₂ requirement does not scale with drift length

Argon Purification Concept

Purity Monitors

Ratio of charge at anode and cathode is related to lifetime

$$Q_A/Q_C = e^{-t_{\text{drift}}/\tau}$$

MicroBooNE argon purity

- ≥ 2.5m drift length, required at least 3 ms electron lifetime (~100 ppt O₂ concentration)
 - Achieved much higher!

LArIAT argon purity

- In contrast, LArIAT was a rollercoaster of O₂-equiv contamination levels...
- But not a huge problem because drift length was so short

"Purity" without LAr recirculation

Simplified cryo system comparison

LArIAT's Recirculation/Filtration System (that was never used....)

Infrastructure Needs

▶ LAr systems

- Cryostat, filters, pumps, condenser, etc.
- ► Supply/storage dewars (LN₂, LAr)
- ► Monitoring & controls
- Power
 - ▶ 120V/208V typical for electronics racks, pumps, filters
 - ► Clean power/Noise isolation
- Good grounding scheme

Other things to consider

Triggering

- If you don't necessarily want to rely on accelerator signals, a light collection system will be needed (trigger on scintillation light to start TPC readout window)
- External triggers (e.g. for through-going cosmics) are useful for calibrations
- Would be nice to do streaming data w/offline triggering?
 - ▶ E.g., MicroBooNE supernova data stream, uses circular buffer FIFO with external SNEWS alert as delayed trigger

▶ TPC size & type

- Must balance desired event rate with available space and funding
- If lower thresholds are desired, gaseous TPC may be a good choice
- Size sets scale for how good the purification system needs to be
- ▶ Size also sets scale for computing resources needed (e.g., MicroBooNE TPC readout generates ~33 GB/s raw data)

Summary

Considering a LArTPC (or GArTPC) at the STS...

- Need to determine what are the desired thresholds (will it be used for event detection only? Or should it also be able to visualize tracks?) and how many events/year are needed
 - ▶ Gaseous TPC would have lower event rates, but would be better at visualizing low energy tracks
- How much space is available, and is that large enough for a TPC + infrastructure?
 - Cryogenic recirculation/purification is critical for larger LArTPCs and lower energy events

Thank you!

Random extra slides...

MicroBooNE cryogenic systems

300W

cryocooler

ArgoNeuT cryogenic system

Simple system with filtration and recirculation

Filters (O₂ and H₂O removal)

J.L. Raaf | Workshop on Fundamental Physics at the Second Target Station 2019/07/27

lonization yields

- Number of ionization electrons released by the recoiling nucleus (N_e) depends on:
 - Average excitation/ionization energy (W = 19.5 eV)
 - ► Relative excitation vs. ionization yield ($\alpha = N_{ex}/N_i$)
 - ▶ Ion-electron recombination (R), depends on E field, particle type, argon purity...
 - ► Nuclear quenching (L_{eff}) (i.e., secondary scattering)

$$N_e = L_{\text{eff}} \frac{E_{\text{dep}}}{W} \frac{1 - R}{1 + \alpha}$$

► Large uncertainties in recombination models

LArIAT

MiniCAPTAIN/CAPTAIN

► TPC

- Hexagonal TPC with vertical drift
 - ▶ MiniCAPTAIN prototype: 32 cm drift, 400 kg active
 - ► CAPTAIN: 1.0 m drift, 5 tons active volume
- ▶ 5 wireplanes (3 readout + 2 field-shaping/shielding)
- 3mm wire pitch
 - MiniCAPTAIN 1000 channels
 - ► CAPTAIN: 2000 channels

► Light collection system

 Cryogenic PMTs view active volume through TPB-coated windows in cathode plane

